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ABSTRACT

This paper addresses the sign video interpretation which is
a weakly supervised task. Each sign action in videos lacks
exact boundaries or labels. We design a Parallel Temporal
Encoder (PTEnc) to learn the temporal relation of a sign video
from local and global sequential learning views in parallel.
PTEnc utilizes the complementarity between the local and
global temporal cues. Then, fused encoded feature sequence
is fed into a Connectionist Temporal Classification (CTC)
based sentence decoder. In addition, in order to enhance
the temporal cues in each video, we introduce a reconstruc-
tion loss, which performs in an unsupervised way without
additional labels. The CTC loss cooperates with the recon-
struction loss in an end-to-end training manner. Experimental
results on a benchmark dataset demonstrate the effectiveness
of the proposed method.

Index Terms— Sign language translation, connectionist
temporal classification, parallel temporal encoder, reconstruc-
tion loss.

1. INTRODUCTION

Sign language is a kind of language which conveys seman-
tic information by human behaviors. It is challenging to ob-
serve the visual variations of gestures, human postures and
facial expressions, and translate them into natural language.
Thus, automatic Sign Language Translation (SLT) is a cross-
modality semantic understanding task [1, 2, 3]. It aims to
learn the mapping between visual frame streams and gram-
matical ordered words. However, there is a huge semantic
gap between visual and textual context transformation. Addi-
tionally, SLT is a weakly supervised task. Each video is only
labeled with an ordered word sequence, but no exact bound-
aries for each sign action.

Therefore, the challenges of SLT are divided into two as-
pects: one is to learn discriminative visual features containing
temporal relation in the videos, and the other is to address the
weakly supervision challenge in this task. In the absence of
temporal labels at word level, the accurate alignment between
a feature sequence and a sentence is hard to achieve. The for-
mer considers good features describing visual content, while
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the latter focuses on the transformation between visual and
textual semantics.

Recently, Convolutional Neural Networks (CNNs) show
superior performance in image feature extraction, such as
ResNet [4], VGG [5] and GoogleNet [6]. Meanwhile, 3D
CNN is widely used in various video analyses which con-
siders both spatial and temporal variations in videos. In this
paper, we use a 3D CNN model embedded ResNet (C3D-
ResNet [7]) to extract clip features of sign videos. C3D-
ResNet explores short-term temporal cues, i.e., the temporal
relation in adjacent clips. To learn the global temporal rela-
tion in each entire sign video, we propose a Parallel Temporal
Encoder (PTEnc), which encodes C3D-ResNet clip features
from both local and global sequential learning views. PTEnc
utilizes the complementarity between the local and global
temporal relation. Then fused encoded feature sequence is
fed into a Connectionist Temporal Classification (CTC) based
decoder for sentence generation. The CTC loss maximizes
the probability of alignments of target sequence.

Furthermore, to address the weakly supervision challenge
in SLT, we devote to unsupervised learning strategy [8, 9].
For example, the Neural Machine Translation (NMT) model
[9] improves the model performance by a dual translation
training process (i.e., English-to-German translation versus
German-to-English translation). In this paper, we introduce
a reconstruction loss, which measures the distance between
original and reconstructed clip features. While minimizing
the difference, the model is pushed to learn temporal cues in
an unsupervised way. This reconstruction loss is combined
with the CTC loss to optimize the proposed model together.

The contributions of the paper are presented as follows:
• We design a Parallel Temporal Encoder (PTEnc) to

learn the efficient temporal relation from both local and
global sequential learning views among continuous
clips in a video.
• We propose a reconstruction loss to enhance the tem-

poral cues in videos, which works in an unsupervised
way without additional word-level labels.
• The CTC optimization is used to maximize the align-

ments probability of the target sequence. Both the CTC
and reconstruction losses are jointly drawn into training
in an end-to-end manner. The proposed model achieves
comparable performance to the state-of-the-arts.
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Fig. 1. The overall framework. A pretrained model, C3D-ResNet, is used to extract clip features of each video. The features are
fed into sequential encoding modules PTEnclocal and PTEncglobal in parallel, and the proposed model fuses the local and global
temporal correlations. At last, a CTC-based decoder generates a predicted sentence. In addition, we adopt a reconstruction loss
in the unsupervised way to further improve the performance of the model.

2. OUR APPROACH

The proposed model is described in Fig.1. The SLT task
is to generate a natural language sentence for a given sign
video. We firstly divide the video into n clips of equal length,
and use a pretrained C3D-ResNet model [7] to extract the
clip features. We denote the extracted clip features as V =
{vn}Nn=1. Then, based on the features, a Parallel Temporal
Encoder (PTEnc) are proposed to model both global and lo-
cal sequential learning in the video. These two branches are
fused and fed into a Connectionist Temporal Classification
(CTC) module to decode the sign probabilities of clip fea-
tures. In addition, in order to enhance the temporal cues in
the video, we adopt an unsupervised learning idea to measure
the distance between original and reconstructed visual fea-
tures, which is considered as a reconstruction loss. Finally,
the proposed model jointly uses the reconstruction loss and a
CTC loss to address the SLT problem. Each component of the
model is detailed as follows.

2.1. Parallel Temporal Encoder

As shown in Fig.1, PTEnc is comprised of two parallel
branches named as PTEnclocal and PTEncglobal. These two
branches have the same input and output data sizes.

PTEnclocal. PTEnclocal aims to learn the local temporal
relation between adjacent clips. We conduct a two-stage con-
volution module on these adjacent two clip features to learn
the local relation.

The two-stage convolution module in PTEnclocal have
convolution kernels h1 × w1 × c1 and h2 × w2 × c2 ( ab-
breviated from height × width × channel), respectively.
PTEnclocal is formulated as:

Vl =
{
vln
}N
n=1

= {Conv2 [Conv1 (vn)]}Nn=1 . (1)

where Conv1 and Conv2 stand for the operations of two con-
volution layers, respectively.

We set h1 = h2 = 2, w1 = 514, w2 = c1 = 1024, c2 =
2048, and the stride to 1. This means that PTEnclocal grad-
ually learns the local temporal relation between adjacent two
clip features. To output the consistent temporal dimension
N , we set padding as 1 in the convolutional operations. Be-
sides, we also adopt ReLU [10] and one-dimensional batch
normalization operation [11], to avoid overfitting and boost
the training speed.

PTEncglobal. PTEncglobal aims to learn the global tem-
poral relation of a video. Recurrent Neural Network (RNN) is
widely used for capturing sequence temporal relation [12, 13,
14]. Long Short-Term Memory network (LSTM) is a variant
of RNN and performs better at long-term dependency prob-
lem [15, 16]. Moreover, Bidirectional LSTM (BLSTM) is
composed of LSTM units in two directions, which considers
the temporal correlation of forward and backward transmis-
sions. Thus, in this paper, we adopt BLSTM as the basic unit
of PTEncglobal.

BLSTM uses two LSTM units to encode input sequence
from two directions at each time step t. And it com-
putes the forward and backward hidden states

−→
ht and

←−
ht .

The two vectors are concatenated together as the output
ht = [

−→
ht ;
←−
ht ][17, 18]. We denote the BLSTM module in

PTEncglobal as BLSTM1. The PTEncglobal can be formu-
lated as follows:

Vg = {vgn}
N
n=1 = {BLSTM1 (vn)}Nn=1 . (2)

Fusion. In order to effectively utilize the complementar-
ity between Vl and Vg , we integrate them into a fused feature
sequence. The fused feature sequence is obtained with sum
operation in this paper:

Vf =
{
vfn
}N
n=1

=
{
vln + vgn

}N
n=1

. (3)
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2.2. CTC-based Decoder

After encoding aforementioned features, this paper proposes
a CTC-based decoder for sentence translation. Since BLSTM
excels at modeling forward and backward contexts in the se-
quential learning compared with basic RNN modules [12, 15],
it is more robust and effective in capturing action variations in
SLT. In this paper, we choose BLSTM as the unit of decoder:

H = {hn}Nn=1 =
{
BLSTM2

(
vfn
)}N
n=1

. (4)
CTC optimization. Here we use the CTC optimization

in [19] as an objective function of the decoder. At first, with
the outputs of BLSTM2, we use a fully connected layer FC
to embed them into a non-normalized CTC categorical prob-
ability sequence with K classes:

P = {pn}Nn=1 = {FC(hn)}Nn=1 . (5)
where pn ∈ RK is the CTC categorical probability vector of
n-th clip, and K is equal to the vocabulary size plus 1 (the
blank symbol ‘ ’).

At the stage of training, suppose the generated sentence
Y is {ym}Mm=1. Let π = {πn}Nn=1 denote a CTC alignment,
which is composed of a sequence of blanks and words. De-
note pn =

{
pkn
}K
k=1

, where pkn is the probability of label k
in vector pn. The probability of π is given by the product of
probabilities:

P (π) =

N∏
n=1

P (πn) =

N∏
n=1

pπn
n . (6)

A target sequence can have multiple different alignments.
CTC summarizes a many-to-one map as B, which removes
all blanks and repeated labels from the alignments. The CTC
loss function is defined as:

Lctc = −log
∑

π=B−1(Y)

P (π) . (7)

where B−1 (Y) = {π | B (π) = Y} is the set of all the align-
ments.

CTC Online Decoding. In the testing stage, we imple-
ment online decoding by the argmax function on the CTC
score matrix {pn}Nn=1, and output the word classification la-
bels with the maximum score. A 2-stage greedy strategy on
the label sequence is used to merge an output sentence, which
removes blank label at 1-th stage and deletes continuous rep-
etitions at 2-th stage.

2.3. Reconstruction Loss

In order to obtain more temporal cues in the video, we intro-
duce a reconstruction loss. The reconstruction loss calculates
the distance between original and reconstructed clip features.

As shown in Fig.1, the feature reconstruction process is
realized by a normal LSTM unit. The outputs of BLSTM2,
{hn}Nn=1, are taken as the input of LSTM, and the outputs of
LSTM are considered as the reconstructed clip features. The
clip features reconstruction process is formulated as:

Ṽ = {ṽn}Nn=1 = {LSTM(hn)}Nn=1 . (8)

where ṽn denotes the n-th reconstructed clip feature.
We set the hidden state size of LSTM equal to the dimen-

sion of feature vn, and use the Mean Square Error (MSE) loss
to represent the average distance between the original and re-
constructed clip features of each video. The reconstruction
loss is formulated as:

Lrec =
1

N

N∑
n=1

φ (ṽn, vn) . (9)

where φ denotes the function of the MSE calculation.

2.4. Training and model setting

We use a joint loss defined in Eq.10 to train the model, which
contains a CTC loss and a reconstruction loss.

L = Lctc + βLrec (10)

where hyperparameter β is used to balance the proportion of
Lrec. In this paper, we set β = 0.4.

In the training process, the clip features are obtained from
18-th layer of C3D-ResNet [7], which is pretrained on a Sign
Language Recognition (SLR) dataset [3, 20]. The hidden
state size of both BLSTM1 and BLSTM2 is 1024. The
hidden state size of LSTM and the dimension of clip fea-
tures are both 512. The proposed model is train by Adam
optimizer [21], with a learning rate 10−4, a batch size 100, a
beats ranging from 0.5 to 0.999, and a weight decay 10−5.

3. EXPERIMENT

3.1. Dataset and Evaluation

Dataset. Experiments are conducted on a SLT benchmark
dataset RWTH-PHOENIX-Weather 2014 [1], which con-
tains 6841 videos performed by 9 different signers. All
videos in the dataset are split into 5672/540/629 for train-
ing/validation/test, respectively. Each video corresponds to a
sentence in German sign language.

Evaluation. Word Error Rate (WER) reflects the similar-
ity between the predicted sequences and reference sequence
at word level. As defined in the Eq. 11, a lower WER means
a better performance.

WER =
#sub+#del +#ins

#words num
(11)

del =
#del

#words num
(12)

ins =
#ins

#words num
(13)

where #sub, #del and #ins measure the least operations of
substitution, deletion, and insertion referenced to the ground
truth, respectively. #words num is the number of words in
the reference sequence.
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Table 1. Comparison on the RWTH-PHOENIX-Weather 2014 dataset. ‘Extra supervision’ means additional knowledge or
cues are imported, such as [22] introduces an already trained sign language dictionary. ‘r-hand’, ‘traj’ and ‘face’ denote
additional features of right-hand poses, trajectories and facial expressions, respectively. ‘Iterations’ is the times of offline
iterative optimizations, based on the Expectation Maximization (EM) algorithm.

Method
Extra Modality

Iterations
VAL TEST

supervision r-hand traj face des / ins WER des / ins WER
HOG-3D [1]

√
1 25.8 / 4.2 60.9 23.2 / 4.1 58.1

CMLLR [1]
√ √ √

1 21.8 / 3.9 55.0 20.3 / 4.5 53.0
1M-Hands [22]

√ √
3 19.1 / 4.1 51.6 17.5 / 4.5 50.2

1M-Hands [1, 22]
√ √ √ √

3 16.3 / 4.6 47.1 15.2 / 4.6 45.1
SubUNets [23]

√
1 14.6 / 4.0 40.8 14.3 / 4.0 40.7

Staged-Opt [2]
√

3 13.7 / 7.3 39.4 12.2 / 7.5 38.7
CNN-Hybrid [24]

√ √
3 12.6 / 5.1 38.3 11.1 / 5.7 38.8

Dilated CNN [3] 5 8.3 / 4.8 38.0 7.6 / 4.8 37.3
Ours 1 12.7 / 5.5 38.1 11.9 / 5.6 38.3

3.2. Comparison and Analysis

Ablation studies. The results of the ablation studies are il-
lustrated in Table 2. Ours(L)ctc is a variant that only uses
a single-branch encoder PTEnclocal with the CTC loss Lctc,
Ours(G)ctc covers only PTEncglobal, and Ours(P )ctc com-
bines PTEnclocal and PTEncglobal. These models are trained
with a single CTC loss. In contrast, Ours(L), Ours(G) and
Ours(Full) are trained with both Lctc and Lrec.

Compared to Ours(L)ctc and Ours(G)ctc, Ours(P )ctc
performs better. The WER is reduced by 1.4/1.4 and 1.0/1.1
on val/test, respectively. This indicates the effectiveness of
the proposed PTEnc, which utilizes the complementarity be-
tween local and global temporal relation.

By introducing the reconstruction loss,Ours(L),Ours(G)
andOurs(Full) are superior to their originals, i.e.,Ours(L)ctc,
Ours(G)ctc and Ours(P )ctc, respectively. The reconstruc-
tion loss brings 3%∼4% reduction of WER. This verifies that
the joint optimization of CTC and reconstruction losses is
resultful for SLT. Meanwhile, among these variants of our
method, Ours(Full) performs best. This demonstrates the ef-
fectiveness of the global and local temporal cues combination
and the joint loss optimization again.

Main Comparisons. We compare Ours(Full) with
the state-of-the-arts on RWTH-PHOENIX-Weather 2014 [1]
dataset. As shown in Table 1, our model achieves comparable
performance to the state-of-the-arts without extra supervision
and multi-modality information. And our approach even out-
performs some methods using offline iterative optimizations
by a large margin. Specifically, 1M-Hands [1, 22] imports
a trained aforehand sign language dictionary as extra su-
pervision. CNN-Hybrid [24] introduces initial alignments
provided by 1M-Hands [1, 22]. Compared with the end-
to-end method SubUNets [23], the WER of our method is
reduced by 2.7/2.4 on val/test. Besides, Dilated CNN [3] has
the closest performance to ours. However, it achieved the best
performance with the help of five times offline iterative opti-
mizations. Without offline iterative optimization, the WER of
it is 60.3/59.7 on val/test. In contrast, our model is also trained

Table 2. Performance comparison of different variants of our
method.

Variant
VAL TEST

des / ins WER des / ins WER
Ours(L)ctc 14.6 / 5.2 41.0 14.2 / 5.1 41.2
Ours(G)ctc 12.6 / 5.1 40.6 11.8 / 5.7 40.9
Ours(P )ctc 13.3 / 5.2 39.6 12.4 / 5.6 39.8
Ours(L) 13.0 / 5.1 39.3 12.5 / 5.2 39.2
Ours(G) 11.4 / 5.2 38.8 10.6 / 5.9 39.3

Ours(Full) 12.7 / 5.5 38.1 11.9 / 5.6 38.3

in end-to-end manner and the WER is 38.1/38.3 on val/test.
This means, on an end-to-end training, our model improves
performance by almost 37%/36% on val/test compared to
Dilated CNN [3]. These results quantitatively demonstrate
the effectiveness of our approach.

4. CONCLUSION

This paper proposes a Parallel Temporal Encoder (PTEnc)
for sign language translation, which learns both the local
and global temporal relation of video. And a CTC-based
decoder is explored to translate sentences. To address the
weakly supervised challenge in SLT, we also introduce a re-
construction loss, which measures the distances between the
original and reconstructed visual features. Finally, both the
CTC and reconstruction losses are used to realize the end-to-
end optimization process. Experimental results on RWTH-
PHOENIX-Weather 2014 [1] exhibit the performance of the
proposed model.
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